
DNA to Feature Models 
FINAL REPORT 

 
 

Team Number: sddec20-22 
Client: Professor Myra Cohen 

Advisor:  Professor Myra Cohen 
Team: 

Abdul Rahman Moughrabi: Developer/Documentation Management 
Ahmad Nazar: Team Leader/Developer 
Ahmed Alketbi: Developer/Debugger 

Hyegeun Gug: Developer/Web Management 
Prathik Nair: Debugger/Developer 

 
Team Email: sddec20-22@iastate.edu 

Team Website: http://sddec20-22.sd.ece.iastate.edu/  



Table of Contents 
1 Introduction 4 

1.1 Acknowledgement 4 
1.2 Problem and Project Statement 4 
1.3 Operational Environment 4 
1.4 Intended Users and Uses 4 
1.5 Assumptions and Limitations 4 
1.6 Expected End Product and Deliverables 5 

2. Specifications and Analysis 5 
2.1 Final Design 5 
2.2 Design Analysis 5 

3 Testing and Implementation 6 
3.1 Interface Specifications 6 
3.2 Hardware and Software 7 

3.2.1 Software To Be Used 7 
3.3 Functional Testing 7 
3.4 Unit Testing 7 

3.4.1 Plugin 7 
3.4.2 Plugin to Database 7 

3.5 Integration Testing 8 
3.6 Interface Testing 8 
3.7 Database Testing 8 
3.8 System Testing 8 
3.9 Non-Functional Testing 8 
3.10 Process 8 

Figure 1: Diagram showing Basic testing flow. This diagram  shows how the team's 
coding and testing has been processed involving PMD, SecurityBugs, and Checkstyle. 9 

3.11 Results 9 
3.12 Implementation Challenges and Issues 9 

4 Operational manual 10 
4.1 Necessary Items / First-time setup 10 

4.1.1 Necessary Items: 10 
4.1.2 First time setup: 10 

4.2 Setup 10 
4.2.1 Setting up the database 10 

4.2.2 Setting up the plugin 10 
4.3 Running 11 



5 Conclusion 11 

6 References 12 

7 AppendixⅠ 13 
7.1 AppendixⅡ - Design Document 14 

 
 

 
 
 
  



1 Introduction 
1.1 Acknowledgement 
Special thanks to Dr. Myra Cohen (Iowa State University), and Mikaela Cashman (Iowa State 
University) for providing the technical knowledge and guidance needed for success in this project. 
Special thanks also to the course supervisors, and everyone providing mentorship during the 
course of the project.  

1.2 Problem and Project Statement 
Software Product Lines are a set of software systems with the intrinsic value of features pertaining 
to the satisfaction of certain needs; a key aspect being a model presenting commonality and 
variability within a hierarchical model. A set of these SPLs are called families of SPLs. A subset of 
SPLs are Feature Models. Feature modeling is an organization tool that allows an engineer to 
represent features in a tree of hierarchies; a tool for software modeling to present family of 
software models. It is a unique and efficient way of modeling feature rich systems. 
BioBricks, an iGEM repository of biological parts, provides a tool for biologists and users 
interested in DNA related-fields to analyze parts and models created on this website.. While this 
tool is useful, the repository does not implement the feature model organization method; 
revealing new ideologies about these DNA models that one could not see before.  
Over the course of a year, creating an Eclipse plugin that creates Feature Models based on existing 
models found in an open-source repository called BioBricks is the goal of the project. A successful 
implementation of this plugin allows biologists and scientists to view various models from 
BioBricks in an organized hierarchy.  
 

1.3 Operational Environment  
The main operating environment for the plugin is windows, Mac, and linux. Eclipse is used to run 
the plugin and the database is run on SQL. Any OS that supports SQL and Eclipse will be able to 
run the plugin with full functionality. 

 
1.4 Intended Users and Uses  
The main users are scientists that build biological models of living organisms with specific desired 
properties. The goal of this project aims to be an aid for everyone interested in building DNA 
Feature Models without any restriction. 

 
1.5 Assumptions and Limitations  
During the course of the project, some assumptions and limitations needed to be noted. The 
assumptions and limitations are as follows:  
 



Assumptions: 
● Users with and without knowledge of feature models can build feature models of DNA. 
● The end product provides access and can be used anywhere with internet access to the 

Biobrick repository. 
Limitations: 

● The Biobricks Repository is the main source of information and users need internet access 
anytime they want to use the plugin.  

○ This limitation, however, is an introductory limitation; users running the plugin 
for the first time will need to update the local database with parts from the online 
database. 

○ The intermediary steps after need not require internet access. 
 

1.6 Expected End Product and Deliverables  
 
The expected end product is a FeatureIDE plugin that uses parts extracted from the BioBricks 
Repository. The plugin includes up-to-date BioBrick parts classified within organized categories 
with informative description for each part. The organization allows users to construct models 
without the hassle of navigating BioBricks repository.  
Delivery Date : November 20th 2020 
 

2. Specifications and Analysis  
 

2.1 Final Design  
 
The final design of the project involves a hierarchical approach in the FrontEnd aspect such that 
each dropdown menu contains a child/subset of the selected option with similar attributes as the 
parent but contain distinct features. The final selection made by the user invokes the appearance 
of a pop-up window containing necessary information for the user to assess which part(s) are to 
be included in the Feature Model to be created. 
The BackEnd aspect of the project was designed in a similar way to the FrontEnd but an abstract 
class was used to create the barebones of all parts. Classes that extend the aforementioned 
abstract class implement specifics that distinguish each subset and class of parts. An example of 
the following is Plasmids extending Part such that it has a name, description and length, and 
Plasmids include the attribute explaining a PCR insertion. 
 

2.2 Design Analysis  
 
The decisions made to design the FrontEnd and BackEnd aspects of the project relied on the 
stylings used in AGILE Software Development Practices. Creating an abstract class in the BackEnd 



allowed for redundant code to be neglected where only one class is a parent class of all classes. 
Using SQL made the most sense since it is one of the most convenient methods in database 
creation available in the modern world. Everything in the backend is dependent upon controllers 
using CURL commands by ways of the FrontEnd. 
For the FrontEnd, AGILE Software Practices were also used to develop and conclude design 
decisions. The FrontEnd relies on the aforementioned CURL commands to update data currently 
available related to Parts. The idea behind CURL commands and utilizing GET requests in the 
BackEnd controllers is to have consistent updates to the data and the constant availability of most 
recent data, specifically parts and models appearing on the BioBricks Repository. 
These design choices were deemed to be most feasible based on the development style and the 
inherent functionality of the plugin. 
 

3 Testing and Implementation  
 

3.1 Interface Specifications  

The project is entirely software development and coding. There are multiple ways in which a 
software project can be tested. This project was tested using: 

● Functionality testing  
○ Created test cases that asses all function implemented and ensures correct 

functionality 
● Mockito Tests 

○ Used to test part information parsing and database behavior 
● Review of full code 

○ Presented code to a professional for review and criticism 
● CI/CD 

○ Keeps the server running automatically and detects compiling issues on recent 
pushes to the Git 

○ Immediately push latest updates to code.  
● Code analysis  

○ Testing the code with a software called PMD Java that reveals security 
vulnerabilities and concurrency issues 

● JUnit Tests  
○ Verify the wanted construction of feature models 

 

  



3.2 Hardware and Software  
 

3.2.1 Software To Be Used  

The main software tools used for the plugin are Springboot Suite, Maven, Java 12+, Eclipse IDE 
and FeatureIDE. 

Software used in the testing phase include: 

● PMD: used to scan code written and shows some potential bugs and problems that may 
occur. This is useful because it can increase performance, complexity of code, and assists 
debuggers in removing all bugs. 

● Checkstyle: used to improve code adheres and makes sure the style of each class written 
is similar to the other. This is useful because code is pushed to the database by 5 different 
people and each one will have a different coding style. 

● SecurityBugs: used to show bugs that MAY occur in the future and helps write code to be 
able to avoid such bugs. This is useful because it helps save time by avoiding the 
occurrence of different bugs. 

 

3.3 Functional Testing 
As each aspect of the project was completed, we needed to test the functionality of the project 
thoroughly to ensure a satisfactory final product. When each individual module was completed, 
we performed unit testing on that module to verify the functionality. 
 

3.4 Unit Testing  
The team tests each method introduced to the server for correctness and performance. As more 
functionality is added to the backend, complex unit tests to validate stability and behavior will 
hence be added. These tests will be conducted on web scraping, data parsing, and database to 
validate our backend development. 
 

3.4.1 Plugin 
To individually test the plugin we emulated the output of the program. Then we send the test 
status to the script to check if the plugin is working correctly. In order to ensure that the data was 
correct, we cross-checked the result and compared it using Postman.  
 

3.4.2 Plugin to Database  
To ensure that the plugin could access the database, we had to check if the full data could be 
accessed from the plugin. 
 



3.5 Integration Testing  
Integration testing consists of putting the Plugin interface and the Plugin into the database. In 
order to ensure that the system performs as required, we need to make sure that we can send data 
from the program, see if the database was created  Once that is done, we can make sure that the 
program correctly catches the data. 
 

3.6 Interface Testing 
GUI is an important component of any software. The team’s goal is to build a simple interface that 
lets users choose parts using a drop-down menu. Testing is done through simulation and on-click 
tests then users will be asked for feedback on implementation design to ensure a familiar and easy 
GUI design. Most of the interface testing follows manual testing since it provides better 
debugging results. 
 

3.7 Database Testing 
We performed a test ensuring if the database is initialized when the files are parsed through the 
backend. In order to test, we used a postman to check if the file could be parsed correctly before 
working with the files. After checking the outputs, we parsed the files and made sure the database  
has been initialized correctly. 
 

3.8 System Testing  
System testing will basically be a combination of the two integration tests with the addition of the 
server files. For a successful test, we need the same exact results as the integration tests. 
 

3.9 Non-Functional Testing 
Tests were conducted to establish stability, upgradability, usability, security, and performance. 
Mockito testing is used as database capacity increases to ensure the desired efficiency for the 
backend. The team strained the server to ensure its ability to handle many users at the same time. 
As for the frontend, on-click testing is used for various scenarios to ensure a smooth and 
satisfactory user experience. 
 

3.10 Process  
The team started off by a bottom-up approach to PMD and SecurityBugs. This involves adding 
code through PMD and SecurityBugs, which analyze code and the project for potential bugs or 
problems that can occur. For the testing process, team members went through the analyzed code 
and made changes to the component such as functions, class and interface. Due to working in a 
team project, code needs to be in a consistent style. By using Checkstyle, the team’s code ended 
up with a similar style of code pushed to the repository and easier to understand the portion of 
what other members worked on.  



 

Figure 1: Diagram showing Basic testing flow. This diagram  shows how the team's coding and testing has 
been processed involving PMD, SecurityBugs, and Checkstyle. 

 

3.11 Results 
The team faced several issues while working on the project. The first issue the team faced was 
“Error with web scraping.” During the phase of web scraping, the team's final goal is to have 
consistent data from the Biobrick repository. However, the team struggled due to having unique 
characters throughout the output file from web scraping. This was resolved by having an 
assumption of having Operation System’s base language setup other than English might cause the 
problem.  By working on English based OS, the web scraping function got resolved and fully 
functional.  

Teams are building file parsers to send output files to the database. The backend also has an 
automatic XML parser that gets the data from BioBricks’ XML database. The XML parser was 
difficult to generalize between all parts categories. As a result, some part types had different 
implementations for the XML parser.  

 

3.12 Implementation Challenges and Issues  
The team ran though different challenges throughout the project such as: 

1. Understanding the background of the project since the project deals with DNA and is 
more related to biologists. 

2. XML parsing had a lot of edge cases since some part types had more than one format in 
the XML file structure. 

3. FeatureIDE source code has minimal documentation which made it hard to modify or use. 
4. COVID19 made team meetings more challenging and team members who work on the 

same stuff had some troubles with implementation and testing. 



4 Operational manual  
 
4.1 Necessary Items / First-time setup  
4.1.1 Necessary Items:  

- Eclipse compatible OS 
- Java Environment 
- Jar file(database) 
- SQL to run the database 
- FeatureIDE Plugin 

 
4.1.2 First time setup: 
Downloading the correct version of Java environment and eclipse is necessary to run the plugin correctly.  
https://download.eclipse.org/eclipse/downloads/drops4/R-4.17-202009021800/ 
Next comes downloading the plugin from GitHub and installing it in eclipse 

 
4.2 Setup  
4.2.1 Setting up the database 
Database can be set up by: 

● Opening and running the included JAR file  
 

4.2.2 Setting up the plugin 
Setting up the program comes in 2 steps:  

● Downloading and installing DNAtoFeatureModels Plugin 
● Running the plugin in eclipse to display the different categories  

https://download.eclipse.org/eclipse/downloads/drops4/R-4.17-202009021800/


 
 

4.3 Running  
Once the plugin and database have been set up, the operation should be simple. The user will 
select the category and sub-category needed, selecting the action import, view, or edit. 
 

5 Conclusion 
The plugin project incorporated ideas from an ongoing research project led by Dr. Myra Cohen 
and involved the application of concepts and knowledge gained by going through fundamental 
courses at Iowa State University. The plugin incorporated the use and application of critical 
analysis skills and the ability to think through multiple design options and choose the best route 
that benefits the project the most in terms of optimization and functionality. The plugin project 
has the barebones and foundations completed with utmost detail and dedication. The FrontEnd 
requires some work in terms of formulation and refinement of output to propagate data in order 
to automatically create parts from online data regarding parts of the database. The project was a 
fulfilling experience to be a part of during the team’s last two semesters at Iowa State University 
and despite the unforeseen event of COVID-19 as well as the quick need to adapt to a virtual 
situation, the team found a way to persevere and deliver an efficient final product. 



6 References 
Previous works are referenced below. The team thanks all the information contributed by these sources and 
their availability. 

● D. N. KTH, D. Nešić, J. Krüger, Ș. Stănciulescu, Ș. Stănciulescu, T. Berger, T. Berger, Kth, Jacob 
Krüger University of Magdeburg, University of Magdeburg, Abb, Abb, Chalmers University of 
Technology, Chalmers University of Technology, University of Tartu, Saarland University, and 
Imperial College, “Principles of feature modeling,” Principles of feature modeling | Proceedings of 
the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium 
on the Foundations of Software Engineering, 01-Aug-2019. [Online]. Available: 
https://dl.acm.org/doi/abs/10.1145/3338906.3338974. [Accessed: 23-Jan-2020]. 

● M. Cashman, M. B. Cohen, M. B. Cohen, W. Niu, Mikaela Cashman Iowa State University, Iowa 
State University, Iowa State UniversityView Profile, Justin Firestone University of 
Nebraska-Lincoln, Justin Firestone, University of Nebraska-Lincoln, University of 
Nebraska-LincolnView Profile, Iowa State University, Suranaree University of Technology, 
Suranaree University of Technology, Wei Niu University of Nebraska-Lincoln, Chalmers | 
University of Gothenburg, University Lille, Danfoss Power Electronics A/S, University of 
Namur,Humboldt-Universit, University Paris, IK4-IKERLAN Research Center, Sorbonne University, 
and TU Braunschweig, “DNA as Features: Organic Software Product Lines,” DNA as Features | 
Proceedings of the 23rd International Systems and Software Product Line Conference - Volume A, 
01-Sep-2019. [Online]. Available: https://dl.acm.org/doi/10.1145/3336294.3336298. [Accessed: 
23-Jan-2020]. 

● T. Thum and J. Meinicke, “FeatureIDE,” FeatureIDE. [Online]. Available: 
https://featureide.github.io 

 
  



7 AppendixⅠ 
 

● Principles of Feature Modeling- Damir Nesic, Jacob Kruger, Stefan Stanciulescu, Thorsten Berger 
● DNA as Features: Organic Software Product Lines- Mikaela Cashman, Justin Firestone, Myra 

B.Cohen, Thammasak Thianniwet, Wei Niu 
● FeatureIDE source code  

JSON EXAMPLE Object 

{ 

    "partFunction": "generic function", 

    "partType": "Plasmid", 

    "partName": "BB_123", 

    "pcr": "ccaaggg" 

} 

Software Bugs encountered during the creation of the project include: 

● Exception handling 
○ Dealing with FileNotFound exceptions. 
○ Handling NullPointer Exceptions 

● Error handling 
○ Using debuggers to find sources of bugs. 
○ Using break statements. 

● Local database persistency 
● Database setup without all required servers running such as Apache and MySQL server  



7.1 AppendixⅡ - Design Document 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Development Standards & Practices Used 

Following a set of standards ensures development of  a product that is safe and adheres to the consumer 
preferences and expectations; while also ensuring a reliable, and organized workflow for the engineers and 
the consumer. The standards used in this engineering standards used in this project follow the guidelines 
of: 

● IEEE Engineering Standards  
● IEEE Software Engineering Standards 

Summary of Requirements 

● BioBricks repository 
● Extending plugin to support bio bricks 
● Web crawling 
● Software product line engineering 
● Translation of features to be compatible with Feature IDE 
● Creating a system architecture 

Applicable Courses from Iowa State University Curriculum  

● Com S 228: Introduction to Data Structures 
● Com S 309: Software Development Practices 
● Com S 311: Design and Analysis of Algorithms 
● CPR E 308: Introduction to Operating Systems 
● E E 230: Electronic Circuits and Systems 

New Skills/Knowledge acquired that was not taught in courses 
● Background on BioBricks parts that are used in biological living cell building. 
● Feature Modeling Concept and application 
● FeatureIDE Eclipse Plugin 
● Effective Team Coordination 
● Effective Client Communication  



Table of Contents 
Definitions 4 

Figures 4 

Tables 4 

1 Introduction 5 

Acknowledgement 5 

Problem and Project Statement 5 

Operational Environment 5 

Requirements 5 

Intended Users and Uses 6 

Assumptions and Limitations 6 

Expected End Product and Deliverables 6 

2. Specifications and Analysis 6 

Proposed Approach 6 

Design Analysis 7 

Development Process 7 

Conceptual Sketch 7 

Figure 1: the flow of project requirements and dependencies presented in a hierarchy. The figure is 
modelled similarly to a feature model. 8 

3. Statement of Work 8 

3.1 Previous Work And Literature 8 

3.2 Technology Considerations 9 

3.3 Task Decomposition 9 

3.4 Possible Risks And Risk Management 9 

3.5 Project Proposed Milestones and Evaluation Criteria 10 

3.6 Project Tracking Procedures 10 

3.7 Expected Results and Validation 11 



4. Project Timeline, Estimated Resources, and Challenges 11 

4.1 Project Timeline 11 

Figure 2: timeline of the project presented as a hierarchy similar to a feature model. The project is 
divided into four design phases consisting of eight work weeks. Each phase breaks down a set of tasks 
to be completed by the expected work week deadline 12 

Figure 3: Gantt Chart presenting task and milestone breakdown with estimated times. This Gantt Chart 
is used as a progress tracker to make sure the team is in the expected design phase. 12 

4.2 Feasibility Assessment 13 

4.3 Personnel Effort Requirements 13 

Table 1: table showing tasks with low projected effort 13 

Table 2: table showing tasks with medium projected effort 14 

Table 3:  table showing tasks with high projected effort 15 

4.4 Other Resource Requirements 15 

4.5 Financial Requirements 16 

Table 4: cost breakdown for the project 16 

5. Testing and Implementation 16 

Interface Specifications 16 

Hardware and software 17 

Functional Testing 17 

Non-Functional Testing 17 

Process 18 

Figure 4: Diagram showing Basic testing flow. This diagram  shows how the team's coding and testing 
has been processed involving PMD, SecurityBugs, and Checkstyle. 18 

Results 18 

6. Closing Material 19 

6.1 Conclusion 19 

6.2 References 19 

6.3 Appendices 20 



List of figures/tables/symbols/definitions 

DEFINITIONS 

● BioBricks Parts: a standard for interchangeable parts, developed with a view to building biological 
systems in living cells. BioBricks Parts are referred to as Parts within the design document. 

● Software Product Line (SPL): Software engineering methods, tools and techniques for creating a 
collection of similar software systems from a shared set of software assets using a common means 
of production. This definition is referenced as SPL through the document. 

● Feature Model:  a compact representation of all the products of the SPL in terms of features.  
● FeatureIDE: an Eclipse-based IDE that supports all phases of feature-oriented software 

development for the development of SPLs: domain analysis, domain design, domain 
implementation, requirements analysis, software generation, and quality assurance. Different SPL 
implementation techniques are integrated such as feature-oriented programming (FOP), 
aspect-oriented programming (AOP), preprocessors, and plug-ins. 

FIGURES 

● Figure 1: the flow of project requirements and dependencies presented in a hierarchy. The figure is 
modelled similarly to a feature model (page 8). 

● Figure 2: timeline of the project presented as a hierarchy similar to a feature model. The project is 
divided into four design phases consisting of eight work weeks. Each phase breaks down a set of 
tasks to be completed by the expected work week deadline (page 12). 

● Figure 3: Gantt Chart presenting task and milestone breakdown with estimated times. This Gantt 
Chart is used as a progress tracker to make sure the team is in the expected design phase (page 12). 

● Figure 4: Diagram showing Basic testing flow. This diagram  shows how the team's coding and 
testing has been processed involving PMD, SecurityBugs, and Checkstyle (page 18). 

TABLES 

● Table 1: table showing tasks with low projected effort (page  13). 

● Table 2: table showing tasks with medium projected effort (pages: 14). 

● Table 3: table showing tasks with high projected effort (page 15). 

● Table 4: table showing financial costs and total cost (page 16). 

 

 

  



1 Introduction 

1.1 ACKNOWLEDGEMENT 

Special thanks to Dr. Myra Cohen (Iowa State University), and Mikaela Cashman (Iowa State University) for 
providing the technical knowledge and guidance needed for success in this project. Special thanks also to 
the course supervisors, and everyone providing mentorship during the course of the project.  

1.2 PROBLEM AND PROJECT STATEMENT 

Software Product Lines are a set of software systems with the intrinsic value of features pertaining to the 
satisfaction of certain needs; a key aspect being a model presenting commonality and variability within a 
hierarchical model. A set of these SPLs are called families of SPLs. A subset of SPLs are Feature Models. 
Feature modeling is an organization tool that allows an engineer to represent features in a tree of 
hierarchies; a tool for software modeling to present family of software models. It is a unique and efficient 
way of modeling feature rich systems. 

BioBricks, an iGEM repository of biological parts, provides a tool for biologists and users interested in DNA 
related-fields to analyze parts and models created on this website.. While this tool is useful, the repository 
does not implement the feature model organization method; revealing new ideologies about these DNA 
models that one could not see before.  

Over the course of a year, creating an Eclipse plugin that creates Feature Models based on existing models 
found in an open-source repository called BioBricks is the goal of the project. A successful implementation 
of this plugin allows biologists and scientists to view various models from BioBricks in an organized 
hierarchy.  

1.3 OPERATIONAL ENVIRONMENT 

The project is software-based. Java 8 and the FeatureIDE plugin for Eclipse are used for the project. 

1.4 REQUIREMENTS 

The project is broken into functional and non-functional requirements. 

● Functional Requirements: 

○ Extract BioBricks part data using web scraper and XML extraction. 

○ Automatically parse scraped part info into objects and populate the database. 

○ Construct BioBricks Feature Models through FeatureIDE. 

○ Create Software Product Lines from models using a simple GUI. 

● Non-functional Requirements: 
○ Ensure part database’ capacity, security and accessibility to establish easy upgradability and 

data fetching. 
○ Efficient and fast response time for web scraping, XML extraction and Feature Model 

construction. 
○ Ability to handle many clients accessing the server without hindering performance. 

● Constraints  



○ Ability to handle many clients accessing the server without compromising integrity and 
preventing a Denial of Service attack with overloaded traffic 

○ Working hand-in-hand with the current version of FeatureIDE and the need to update the 
plugin with consecutive FeatureIDE updates 

1.5 INTENDED USERS AND USES 

The main users are scientists that build biological models of living organisms with specific desired 
properties. The goal of this project aims to be an aid for everyone interested in building DNA Feature 
Models without any restriction. 

1.6 ASSUMPTIONS AND LIMITATIONS 

During the course of the project, some assumptions and limitations needed to be noted. These assumptions 
and limitations are as follows:  

Assumptions: 

● Users with and without knowledge of feature models can build feature models of DNA. 
● The end product provides access and can be used anywhere with internet access to the Biobrick 

repository. 

Limitations: 

● The Biobricks Repository is the main source of information and users need internet access anytime 
they want to use the plugin.  

○ This limitation, however, is an introductory limitation; users running the plugin for the 
first time will need to update the local database with parts from the online database. 

○ The intermediary steps after need not require internet access. 

1.7 EXPECTED END PRODUCT AND DELIVERABLES 

An expected end product is a FeatureIDE plugin that uses parts extracted from the BioBricks Repository. 
The plugin includes up-to-date BioBrick parts classified within organized categories with informative 
description for each part. The organization allows users to construct models without the hassle of 
navigating BioBricks repository.  

Estimated Delivery Date: December 1st 2020 

2. Specifications and Analysis 

2.1 PROPOSED APPROACH 

The project can be tackled using various techniques and methods to solve the problem and deliver a 
high-quality product.  One approach is dividing the project into two sections: theoretical and practical 
section. For each section, assign two subsections: architecture and scope. Strengthening the understanding 
in the fundamental steps enables a solid composition of the scope of the theory. Gaining conceptual insight 
and obtaining all architectural designs helps ease the design of application and the practical section.  



Another approach deemed vital and best is approaching this project as a project manager working on a 
software application for a company. This project consists entirely of coding and software design; this 
method proves unparalleled. Devising such a mechanism aids in the production of  an ideal product. 
Utilizing this method commences several documents to aid in beginning the project: a business case, 
statement of requirements, a project timeline, risk assessment and mitigation, budget, and lastly, a 
communication plan. The last method of approach is an agile approach. This approach entails promptly 
coordinated, vigorous, and nimble adaptations to varying settings.  

These methods of approach all follow IEEE standards with designing a software project and the standards 
regarding joint project work. Research and analysis of  several papers concerning compilation of an 
architectural blueprint of the project and beginning development was completed as segways into the 
project. Various research papers handed out to us from our client: DNA as Features: Organic Software 
Product Lines and Principles of Feature Modeling were also studied. To start on the development of the 
plugin, a solid comprehension software product line engineering, the BioBricks repository, and Feature IDE 
(an Eclipse plugin) needed to be built. The first few weeks began with grasping the core concept of the 
project by identifying and exploring the various aspects of implementation (mentioned above). In the 
following weeks, project schemes and strategies were devised. Multiple tools make their use in the project. 
Those tools are web crawling, Java/XML programming, and working with Eclipse plugins. 

Members of the team are tasked with roles best attributed to their ability and allows them to explore and 
learn while completing the tasks. Taking all these into consideration, the project presents milestones within 
a deadline to be achieved by following an Agile development scheme. Functionalities, hence, increase with 
project and team progression as judged by the team. 

2.2 DESIGN ANALYSIS 

As mentioned in the previous section, discussions on different tools necessary to begin the project and 
exactly how to use them commenced.  Most tools and experiments worked well; most experiments lead to 
successes except for a single failure. Web crawling was a complicated task, but a program that scraped a 
simple, random website was created. Another success was understanding and editing the source code for an 
Eclipse plugin. After successfully scraping the data from the website and reading it, thoughts on an XML 
conversion of the data for later use came about.  

There were some challenges translating it to the correct XML format. Throughout the testing and 
experimenting session, observations were made on modifications and tools needed to take advantage of 
during the course of the project. One observation was that data scraping does not result in XML code, 
therefore resorting to an SQL server deemed the next best option. Some recorded thoughts were learning 
XML aids during the product’s final stages, changing from web scraping to an SQL database, and 
understanding how additions to plugins are made. more work spent on the approach of software design and 
the use of the software is required for an efficient gateway towards the end of the project. 

2.3 DEVELOPMENT PROCESS 

DNA to Feature Models follows the approach of Agile software development. Based on the nature of the 
project, Agile is most suitable due to project requirements and features evolving throughout the process of 
creation. The project has preliminary, required foundations but the building blocks and the materials built 
upon the foundations dynamically change with the project. 

The team separates tasks based on individual skill; applying the best expertise to a given task. Team 
members knowledgeable in the backend aspect of the project work in that scope and those knowledgeable 
in the frontend gain the same workload within that location. 



2.4 CONCEPTUAL SKETCH 

The conceptual sketch of the project is shown in Figure 1. The project involves utilizing Software Product 
Lines and Feature Models. To present Feature Models that make sense to a given user, a friendly 
user-interface is required. The user interface is provided through an Integrated Development Environment 
called FeatureIDE. This section is presented through the frontend aspect of the plugin. The frontend 
includes all formable relationships as defined by a feature model, and is built-upon Eclipse.  

The next section talks about the backend aspect of the project. Parts from the BioBrick Repository will be 
extracted using a web-scraper and stored in a designated database. This database includes all information 
relevant parts used in a DNA model. Using the database, creation of models depends on an XML parser 
which organizes elements of a model according to a user and utilizes all properties of a subset of features 
with respect to a superset of features.  

 

FIGURE 1: THE FLOW OF PROJECT REQUIREMENTS AND DEPENDENCIES PRESENTED IN A HIERARCHY. THE FIGURE IS MODELLED 
SIMILARLY TO A FEATURE MODEL. 

3. Statement of Work 

3.1 PREVIOUS WORK AND LITERATURE 

● Principles of Feature Modeling- Damir Nesic, Jacob Kruger, Stefan Stanciulescu, Thorsten Berger 
● DNA as Features: Organic Software Product Lines- Mikaela Cashman, Justin Firestone, Myra 

B.Cohen, Thammasak Thianniwet, Wei Niu 
● FeatureIDE source code 

The above reference documents provide various pieces of information that need to be brought together for 
the project to function fully. Principles of Feature Modeling dives deep into the concept of feature modeling, 
how it is used in the real world, and it’s overall functionality. The DNA as Features document provides us 
the technical insight (from a biological viewpoint), and how biobricks and feature modeling come into play. 
With these two documents and the given FeatureIDE source code; all three pieces combined gives the 
project all its supplemental references. While there are many feature modeling products in the industry, 
none bring together the three documents outlined above. All references are cited below in section 6.2. 



3.2 TECHNOLOGY CONSIDERATIONS 

The project does not rely on technology that is behind it’s time. In fact, anything that can be conceived (in 
terms of this project), can most likely be programmed in. While the technology needed for this project to be 
successful is available, things like efficiency, and data storage come to mind when improvements come to 
mind. The project relies on an individual server that stores all BioBricks data. Data is hard coded into the 
plugin. 

A design tradeoff was made between using a live web scraper vs one updated on every interval. The decision 
was made to go with an interval-based update due to the fact that the BioBricks Repository is updated once 
a year towards the end of the year after the completion of a so-called competition: the iGEM Competition. 
This period implies that the update occurs after the completion of the competition and automatically rolls 
out as a CI/CD functionality. 

3.3 TASK DECOMPOSITION 

The following tasks are derived from the project’s requirements: 

● Obtain parts’ data from BioBricks Repo using web scraper/XML extraction. 
● Construct parts objects corresponding to their types with the obtained data. 
● Populate the database with parts data. 
● Establish a connection between the server and FeatureIDE plugin. 
● Construct feature modules within FeatureIDE using the XML Feature Builder Tool. 
● Create a simple drop-down menu to assist users to choose parts inside a feature module. 

3.4 POSSIBLE RISKS AND RISK MANAGEMENT 

With every project comes a risk. The pandemic crisis has split the team across the world, forcing remote 
interaction. Face to face interactions often led to a greater understanding of what needed to be done on the 
project. The software aspect of this project makes it easy to collaborate on remotely; there are many 
communication channels set up for us to reduce the risk of miscommunication. Risks associated with the 
project are the following:  

● Communication Issues  
○ Giving each team member tasks to be completed by a deadline and a friendly environment 

where communication is encouraged is provided. Team leader also checks in periodically. 
● Discontinuation of the BioBricks and iGEM Repository 

○ Find a new source to update parts, and keep available parts within the database. 
● Plugin Developmental Error 

○ Break up plugin development into parts. 
● Loss of Updated Code 

○ Use of GitHub and creating branches to keep most updated work on remote and most 
successful on the main branch. 

  



3.5 PROJECT PROPOSED MILESTONES AND EVALUATION CRITERIA 

● Establish connection to Biobrick Repository to gather Biological Part information 
○ In order to get data for Parts to build Feature Models, the team needed to make sure all 

Biological Part data on Biobricks repository is scraped. 
● Store Biological Part information to database 

○ Build a database with the output from web scraping. 
● Build Feature Models based on database 

○ On initialization of the database, the team integrates a mean to convert data to part objects 
for the Feature Model in FeatureIDE. 

● Update database every year when changes are made 
○ Due to iGEM opening annually, parts in the Biobrick Repository will be updated annually. 

The database is hence updated annually.  
● Improve plugin functionality 

○ The final format of the project is to build a system with plugins usable from Eclipse. 
● Enhance user interface 

○ The team updated the graphical user interface to provide easier but effective tools for 
users. 

In order to confirm that team’s milestones are fulfilled, the team came up with following ways to evaluate: 

● Confirm the correct data has been scraped with the online BioBricks repository. 
● Run and check if output of web scraping is parsed to the team's database with all contents. 
● Extract database and run it through FeatureIDE to ensure the parts are usable and stored. 
● Check annually for updates to the database from Biobrick Repository to ensure the team's database 

is updated. 
● Make sure plugin’s functions are usable. 
● Test user interface using different methods to ensure it’s ease of use. 

3.6 PROJECT TRACKING PROCEDURES 

● Gitlab 
○ Gitlab is used  to track code developed and give easier access to all team members. 
○ Members track changes and revert to different versions of the project. 

● Weekly Meetings 
○ Every Tuesday, the team has a meeting with Professor Myra discussing what was 

completed in the previous week.  
○ On Sunday, team members gather and discuss the task for the future. 

● Trello 
○ Team members use Trello boards to keep track of task status. 

● Slack 
○ The team uses Slack to discuss issues or details about tasks. 

  



3.7 EXPECTED RESULTS AND VALIDATION 

Expected Results 
A desired outcome is to have a working plugin that assists scientists build biological models of living 
organisms with specific desired properties. Users view each biological part containing information of part 
name, type, number of uses, validation of stock. An expected final product for people interested in building 
DNA Feature Models to work on the task without restriction. 

Validation 
To validate the program, the team conducts through acceptance testing. Gathering review and feedback on 
what needs to be adjusted. Unit testing is another option to check if a project program is working properly 
as team’s intention throughout the developing stage and finalizing.  

4. Project Timeline, Estimated Resources, and Challenges 

4.1 PROJECT TIMELINE 

The project timeline divides itself into four phases. Each phase consists of eight work weeks. These eight 
work weeks are subdivided according to team-agreed deadlines for completing tasks amounting to total 
project progress. 

The timeline is presented in Figure 2, where a hierarchy of tasks are presented similar to a feature model. By 
judging current team progress, the feature model of the project timeline represents an achievable goal 
within two semesters given that each task in subphases are completed by members best attributed to the 
task. A Gantt Chart is presented in Figure 3 where milestones and tasks are broken down into their 
estimated time needed.  

Plugin implementation has exclusive control by phases 3 and 4 due to the heaviness of the task compared to 
the fundamental plugin build completed in phases 1 and 2; earlier phases involve composition of solid 
foundations before creating the frontend aspect to ensure a reliable product. 



 

FIGURE 2: TIMELINE OF THE PROJECT PRESENTED AS A HIERARCHY SIMILAR TO A FEATURE MODEL. THE PROJECT IS DIVIDED INTO 
FOUR DESIGN PHASES CONSISTING OF EIGHT WORK WEEKS. EACH PHASE BREAKS DOWN A SET OF TASKS TO BE COMPLETED BY THE 
EXPECTED WORK WEEK DEADLINE 

 

FIGURE 3: GANTT CHART PRESENTING TASK AND MILESTONE BREAKDOWN WITH ESTIMATED TIMES. THIS GANTT CHART IS USED 
AS A PROGRESS TRACKER TO MAKE SURE THE TEAM IS IN THE EXPECTED DESIGN PHASE. 

  



4.2 FEASIBILITY ASSESSMENT 

The project helps scientists view various models from BioBricks in an organized hierarchy. It is also an aid 
for everyone interested in building DNA Feature Models without any restriction. Foreseen challenges came 
in two aspects: poor change management and no long-term thinking. For the project to succeed, a big 
picture view was needed to complete the project. What this project does need is constant change 
throughout implementation; keeping track of the different changing curves, and commitment to those 
changes. 

4.3 PERSONNEL EFFORT REQUIREMENTS 

Tables were created to present task deduction and dedicated time allocated for each task as well as an 
explanation. These are shown below in tables 1 - 3. 

 

TABLE 1: TABLE SHOWING TASKS WITH LOW PROJECTED EFFORT 

  

Task Projected effort Hours/Weeks Explanation 

Database Setup low 5 hours for 3 weeks Building and creating the 
database needed for the project. 
Contains relevant information 
for software setup and data 
needed for the plugin. 

iGEM web scraping 
setup and testing 

low 10 hours for 1 week Focused on web scraping 
different data to be able to test, 
setup, and understand how web 
scraping works. 

Create solid 
BioBricks Part Entity  

low 5 hours for 1 week Worked on creating the solid 
BioBricks part object/entity 
with all the necessary backend 
services for full function. 

File Parser 
 

low 5 hours for 2 weeks Created the file parser that 
parses line-by-line and 
populates a collection of strings 
later to be used when creating 
part entities. 



 

 

TABLE 2: TABLE SHOWING TASKS WITH MEDIUM PROJECTED EFFORT 

  

Frontend 
Development 

Medium 12 hours for 4 
weeks 

Started working on the frontend 
portion of the project to create 
the plugin and connect back end 
with front end 

User Interface Medium 6 hours for 3 
weeks 

Creating user interface for plugin 
and creating how user accesses 
data in the plugin 

Enhance UI Medium 8 hours for 2 
weeks 

Final touches for the UI and 
satisfying user needs 

Testing Medium 4 hours for 1 week Stress testing everything needed 
to move on 

Refactoring Medium 6 hours for 2 
weeks 

Refactoring and cleaning up code 
to present the final deliverable. 



 

 

TABLE 3:  TABLE SHOWING TASKS WITH HIGH PROJECTED EFFORT 

4.4 OTHER RESOURCE REQUIREMENTS 

● EclipseIDE 
● Java Runtime Environment 
● FeatureIDE Plugin for Eclipse 
● MySQL Database 
● Server Hosting 

  

Shell Web Scraping High 6 hours for 2 
weeks 

This task was incorporating shell 
web scripting program into the 
Java plugin for automated 
scraping when given a generic 
URL 

Refining Web 
Scraping Output 

High 10 hours for 2 
weeks 

Taking the web scraped output 
and translating it into XML 

Converting Strings 
into Objects 

High 6 hours for 3 
weeks 

This trask was converting a 
collection of strings into part 
objects to be pushed to the 
database and for future usage 

Commenced 
Automated Web 
scraping 

High 5 hours for 2 
weeks 

Commenced, dated automated 
web scraping, and database 
population with more specific 
part objects 

Frontend 
Development 

High 12 hours for 4 
weeks 

Started working on the front end 
portion of the project to create 
the plugin and connect the 
backend with the frontend. 



4.5 FINANCIAL REQUIREMENTS 

A breakdown of financial requirements for the project is shown in the below table. Decisions were made 
with cost efficiency and quality in mind. 

 

TABLE 4: COST BREAKDOWN FOR THE PROJECT 

5. Testing and Implementation 

5.1 INTERFACE SPECIFICATIONS 

The project is entirely software development and coding. There are multiple ways in which a software 
project can be tested. This project is tested using: 

● Functionality testing  
○ Trying out every function implemented and making sure functionality is correct. 

● Mockito Tests 
○ Used to test part information parsing and database behavior. 

● Review of full code 
○ Presenting code to a professional to allow them to discover any problems that will cause 

bugs in the future 
● CI/CD 

○ Keep the server running automatically and detect compiling issues. 
○ Immediately push latest updates to code.  

● Code analysis:  
○ Testing the code with a software called PMD Java that reveals security vulnerabilities and 

concurrency issues. 
○  Encoded in Eclipse to automatically check for the aforementioned issues. 

● JUnit Tests  
○ Verify the wanted construction of feature models. 

Resource Cost 

Iowa State Provided Server Free 

Git Provided by Iowa State Free 

Equipment $300 

Personal Computers  Free 

Online lessons for Plugin Development Free 

Total $300 



5.2 HARDWARE AND SOFTWARE 

Software used in the testing phase include: 

● PMD: used to scan code written and shows some potential bugs and problems that may occur. This 
is useful because it can increase performance, complexity of code, and assists debuggers in 
removing all bugs. 

● Checkstyle: used to improve code adheres and makes sure the style of each class written is similar 
to the other. This is useful because code is pushed to the database by 5 different people and each 
one will have a different coding style. 

● SecurityBugs: used to show bugs that MAY occur in the future and helps write code to be able to 
avoid such bugs. This is useful because it helps save time by avoiding the occurrence of different 
bugs. 

5.3 FUNCTIONAL TESTING 

The project follows a simple testing scheme. The testing schemes are defined as follows: 

● Unit Testing:  
The team tests each method introduced to the server for correctness and performance. As more 
functionality is added to the backend, complex unit tests to validate stability and behavior will 
hence be added. These tests will be conducted on web scraping, data parsing and database to 
validate our backend development. 
 

● Interface Testing: 
GUI is an important component of any software. The team’s goal is to build a simple interface that 
lets users choose parts using a drop-down menu. Testing is done through simulation and on-click 
tests then users will be asked for feedback on implementation design to ensure a familiar and easy 
GUI design. Most of the interface testing follows manual testing since it provides better debugging 
results. 
 

● Integration Testing: 
Since frontend and backend dependence is essential, integration is a crucial part of the project that 
brings all components together. Testing is conducted for basic authentication and communication 
between the server and frontend to establish stable ground. Features will be tested as they are 
added to ensure stability, performance, and security standards until all desired features are 
implemented. 
 

5.4 NON-FUNCTIONAL TESTING 

Tests are conducted to establish stability, upgradability, usability, security, and performance. Mockito 
testing is used as database capacity increases to ensure the desired efficiency for the backend. The team will 
strain the server to ensure its ability to handle many users at the same time. As for the frontend, on-click 
testing is used for various scenarios to ensure a smooth and satisfactory user experience. 



5.5 PROCESS 

The team will start off by a bottom-up approach to PMD and SecurityBugs. This will involve adding codes 
that need to be checked and scanned through PMD and SecurityBugs, which will analyze codes and project 
the potential bugs or problems that could occur in future. For the testing process, team members go 
through the analyzed code and make changes to the component such as functions, class and interface. Due 
to working in a team project, code needs to be in a consistent style. By using Checkstyle, the team’s code 
ended up with a similar style of code pushed to the repository and easier to understand the portion of what 
other members worked on.  

 

FIGURE 4: DIAGRAM SHOWING BASIC TESTING FLOW. THIS DIAGRAM  SHOWS HOW THE TEAM'S CODING AND TESTING HAS BEEN 
PROCESSED INVOLVING PMD, SECURITYBUGS, AND CHECKSTYLE. 

5.6 RESULTS 

The team faced several issues while working on the project. The first issue the team faced was “Error with 
web scraping.” During the phase of web scraping, the team's final goal is to have consistent data from the 
Biobrick repository. However, the team struggled due to having unique characters throughout the output 
file from web scraping. This was resolved by having an assumption of having Operation System’s base 
language setup other than English might cause the problem.  By working on English based OS, the web 
scraping function got resolved and fully functional.  

Teams are building file parsers to send output files to the database. In future, the program will consist of a 
plugin that we automatically parse files to the database. 

  



6. Closing Material 

6.1 CONCLUSION 

DNA to Feature Models has been an interesting journey for the team. Exploring families of SPLs, SPLs and 
Feature Models lead us to a better understanding of representing the project. Experiments conducted thus 
far have been a success; a database for a catalog of parts based on the BioBricks Repository has been 
established. Parts can be extracted using controllers with respect to certain criteria.  

Testing has been successful as interactions with the backend through a designated request service was 
successful. The project’s achievements during the first two phases exceeded our expectations; the last 
phases of the project appear to be full of excitement. Successful project planning led the team to this 
outcome. With the unfortunate COVID-19 outbreak and pandemic, the team created a contingency plan; 
following the plan ensured project progress remains efficient and team members safety a priority. 

6.2 REFERENCES 

Previous works are referenced below. The team thanks all the information contributed by these sources and 
their availability. 

● D. N. KTH, D. Nešić, J. Krüger, Ș. Stănciulescu, Ș. Stănciulescu, T. Berger, T. Berger, Kth, Jacob 
Krüger University of Magdeburg, University of Magdeburg, Abb, Abb, Chalmers University of 
Technology, Chalmers University of Technology, University of Tartu, Saarland University, and 
Imperial College, “Principles of feature modeling,” Principles of feature modeling | Proceedings of 
the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium 
on the Foundations of Software Engineering, 01-Aug-2019. [Online]. Available: 
https://dl.acm.org/doi/abs/10.1145/3338906.3338974. [Accessed: 23-Jan-2020]. 

● M. Cashman, M. B. Cohen, M. B. Cohen, W. Niu, Mikaela Cashman Iowa State University, Iowa 
State University, Iowa State UniversityView Profile, Justin Firestone University of 
Nebraska-Lincoln, Justin Firestone, University of Nebraska-Lincoln, University of 
Nebraska-LincolnView Profile, Iowa State University, Suranaree University of Technology, 
Suranaree University of Technology, Wei Niu University of Nebraska-Lincoln, Chalmers | 
University of Gothenburg, University Lille, Danfoss Power Electronics A/S, University of 
Namur,Humboldt-Universit, University Paris, IK4-IKERLAN Research Center, Sorbonne University, 
and TU Braunschweig, “DNA as Features: Organic Software Product Lines,” DNA as Features | 
Proceedings of the 23rd International Systems and Software Product Line Conference - Volume A, 
01-Sep-2019. [Online]. Available: https://dl.acm.org/doi/10.1145/3336294.3336298. [Accessed: 
23-Jan-2020]. 

● T. Thum and J. Meinicke, “FeatureIDE,” FeatureIDE. [Online]. Available: 
https://featureide.github.io 

 

6.3 APPENDICES 

● Principles of Feature Modeling- Damir Nesic, Jacob Kruger, Stefan Stanciulescu, Thorsten Berger 
● DNA as Features: Organic Software Product Lines- Mikaela Cashman, Justin Firestone, Myra 

B.Cohen, Thammasak Thianniwet, Wei Niu 
● FeatureIDE source code  

JSON EXAMPLE Object 



{ 

    "partFunction": "generic function", 

    "partType": "Plasmid", 

    "partName": "BB_123", 

    "pcr": "ccaaggg" 

} 

Software Bugs encountered during the creation of the project include: 

● Exception handling 
○ Dealing with FileNotFound exceptions. 
○ Handling NullPointer Exceptions 

● Error handling 
○ Using debuggers to find sources of bugs. 
○ Using break statements. 

● Local database persistency 
● Database setup without all required servers running such as Apache and MySQL serve 

 

 

 

 

 

 


